Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

Read the full thing here.

Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic
Upload A File
Submit Email

Buy Advertising

Follow the form on the landing page to bid
for an uncensored self-regulated ad position.
Each word included bears the same ad

Login to enable post sorting. Buy/sell dictionaries which contain words which contain spaces (subreddits) to conglomerate posts and sell ads. Adverts pay users for each click and are auctioned off to the highest bidder. No clicks no credits. Posts do not archive, they stay active but can recirculate by editing to add new spaces (you can post to multiple spaces at once). We do not track your data, not even an email. Your content is yours, so you can input a Creative Commons on every post.

Click here to flash read.

Calcium phosphate cements (CPCs) have been widely used during the past decades as biocompatible bone substitution in maxillofacial, oral and orthopedic surgery. CPCs are injectable and are chemically resemblant to the mineral phase of native bone. Nevertheless, their low fracture toughness and high brittleness reduce their clinical applicability to weakly loaded bones. Reinforcement of CPC matrix with polymeric fibers can overcome these mechanical drawbacks and significantly enhance their toughness and strength. Such fiber-reinforced calcium phosphate cements (FRCPCs) have the potential to act as advanced bone substitute in load-bearing anatomical sites. This work achieves integrated experimental and numerical characterization of the mechanical properties of FRCPCs under bending and tensile loading. To this end, a 3-D numerical gradient enhanced damage model combined with a dimensionally-reduced fiber model are employed to develop a computational model for material characterization and to simulate the failure process of fiber-reinforced CPC matrix based on experimental data. In addition, an advanced interfacial constitutive law, derived from micromechanical pull-out tests, is used to represent the interaction between the polymeric fiber and CPC matrix. The presented computational model is successfully validated with the experimental results and offers a firm basis for further investigations on the development of numerical and experimental analysis of fiber-reinforced bone cements.

Click here to read this post out
ID: 325434; Unique Viewers: 0
Unique Voters: 0
Latest Change: June 6, 2022, 5:41 a.m. Changes:


Total post views:

There are no posts.